Genetic variation in *POJ, LPL*, and *TNFRSF10B* affects plasma fatty acid distribution in Alaskan Eskimos^{1–3}

SNP (15), $\sqrt{5}$ SOLAR^V; 4.0 t 1 t $\sqrt{5}$ t (15).

P. t., 't., "5^{V;} u.tl. lt. Lilm5bt lu FA "5.t. "5. t-lm5t.t uu "5bt ll., u~5l:

$$P = - e_G \sqrt{h_1^2} \sqrt{h_2^2} + - e_E \left[\sqrt{\left(1 - h_1^2\right)} \sqrt{\left(1 - h_2^2\right)} \right]$$

Measured genotype analysis

G t Q SNP 1,1175b, $11.75 \cdot 5, 1$ (18) -5 t 75 -5 t 1.1175b, W b 1.621b, 1.12, 1.75 -75 t 1.12, W b 1.621b, 1.12, 1.75 1.12, 1. 125). G $\mathbf{m} - \mathbf{v}$; 4 FA t. Figure 1. T , $\mathbf{m} - \mathbf{v}$; FA \mathbf{v} ; 1 -t t., $\mathbf{m} - \mathbf{v}$; 1 , \mathbf{v} ; 1 , \mathbf (LOD = 3.4) ***5** MUFA (18:1, -9) (LOD = 2.5) (Figure 2). $\dot{E} = 5$, , , \dot{t} ; 1, , (LOD > 2) , e^{-5} _____tl, ___t, SFA.T_____tt, t, t, t, t, t, 1

Bivariate genetic analysis

, l, . ; t, 1 n5 n5, lut n5 (C-16) 1 m5

150 TJ/3535.([(C36566(**t** 535.(7)-538,**t**

sNP **t t 1** , 115 SNP **t 5 t 1 v**; **5 t 5 t 1** SNP **t t 1 D** (>90%) **t t 5** SNP **t T v**; **5 t t**

 FIGURE 2. E -5
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

DISCUSSION

1 tt t^v; t. 1 m FArō t b, t. I rōō t, b t SNP rōrō t ^v, t. 1 m FArō t b, t. I rōrō t rō SNP t m ^v, t. 1 t PUFA

TABL	E 3										
S.	1,	1	11	6 1	, 11, ,	11	-5	-15 1	 -15 b	 1	(=761)

T_11	T t 2	± SE	± SE
M 1. 45	BMI	0.552 ± 0.17	0.257 ± 0.04
	W _ t	0.433 ± 0.17	0.241 ± 0.04
	P t , t	0.601 ± 0.17	0.260 ± 0.04
	I , 1 , 2	0.690 ± 0.26	0.244 ± 0.05
	HDL 1 1 1	-0.36 ± 0.15	-0.350 ± 0.03
	T.1. 🕫	0.732 ± 0.13	0.563 ± 0.03
Plut 15	Gl, , 2	0.565 ± 0.23	0.193 ± 0.04
	T.1. 🕫	0.329 ± 0.13	0.362 ± 0.03
St	P t , t	-0.357 ± 0.14	-0.165 ± 0.04
	F t. r t.	-0.39 ± 0.19	-0.123 ± 0.04
	HDL 1 1 1	0.41 ± 0.17	0.124 ± 0.04
	I , 1 , 2	-0.543 ± 0.25	-0.156 ± 0.05
	T.1. 🕫	-0.57 ± 0.12	-0.316 ± 0.04
MUFA, 18:1 -9	F t. / l	$-0.387 \pm 0.0857D(6)T/F51T$	1.16660TD(0.12)T /F097518

TABLE 4 v; 1, t (= 761)	j	, 1 m ,	. М	-1575 t /		. М М.	8 *15 ,1 m	11 - 15 75	ţ.b, ţ.	rð rð	.) - 1 (mě	i 1 .
G	SNP	TFA	MUFA	PUFA	SFA	18:1 7	18:1, -9	18:2 -6	BMI	% F ႈ	W_I	T.1.15
	35361594	0.226	0.267	0.371	0.767	0.304	0.413	0.206	0.025	0.009	0.043	0.545
	10503814	0.173	0.028	0.017	0.619	0.727	0.381	0.037	0.414	0.165	0.799	0.742
	11136000	0.604	0.364	0.802	0.382	0.509	0.611	0.368	0.002	0.005	0.003	0.04
	1982229	0.992	0.409	0.742	0.916	0.097	0.041	0.388	0.252	0.555	0.126	0.135
	538181	0.033	0.076	0.274	0.584	0.197	0.841	0.279	0.161	0.065	0.600	0.784
	569205	0.032	0.110	0.263	0.505	0.512	0.910	0.385	0.095	0.022	0.390	0.859
	7812347	0.874	0.016	0.722	0.657	0.080	0.024	0.883	0.128	0.032	0.057	0.502
	9331891	0.008	0.188	0.057	0.331	0.295	0.218	0.230	0.780	0.688	0.986	0.073
	1059611	0.172	0.086	0.828	0.975	0.376	0.994	0.041	0.718	0.517	0.253	6.4×10^{-6}
	1121923	0.380	0.199	0.467	0.565	0.863	0.615	0.177	0.024	0.011	0.034	0.636
	13702	0.745	0.023.2	(0.331)-2 🐔		0.565	0.863T 0.3272					× 10

T_t	G	SNP	M 111/ Q	M ,	P b b 1 t t 1 t (BQTN)	L t. t SNP
T.1.1 11 .75		569205	A/0.484	% 0.74	0.68	Fl, 5' UTR

 Al
 t t -LOD t <t

- G
 t2001;60:293 300.
- 2001;60:293 300. 33. R F, B H S. T I t 5.4 5.4 11.5 5.4 1.5 6.5 1.5
- •5 1 ^v; 1 1 CLU •5 N 1 G 1 2009;41:1094 9.

- 1, 1, 1, 1, TRAIL 15, 15, 11, 1, G, 1, 2007;56: 1124 31.